Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization

نویسنده

  • Xiaoming Wang
چکیده

We consider temporal approximation of stationary statistical properties of dissipative complex dynamical systems. We demonstrate that stationary statistical properties of the time discrete approximations (numerical scheme) converge to those of the underlying continuous dissipative complex dynamical system under three very natural assumptions as the time step approaches zero. The three conditions that are sufficient for the convergence of the stationary statistical properties are: (1) uniform dissipativity of the scheme (in the sense of pre-compactness of the union of the global attractors for the numerical approximations); (2) uniform (with respect to initial data from the union of the global attractors) convergence of the solutions of the numerical scheme to the solution of the continuous system on the unit time interval [0, 1]; and (3) the uniform (with respect to initial data from the union of the global attractors) continuity of the solutions to the continuous dynamical system on the unit time interval [0, 1]. The convergence of the global attractors is established under weaker assumptions. Application to the infinite Prandtl number model for convection is discussed. keywords: stationary statistical property, invariant measure, global attractor, dissipative system, time discretization, uniformly dissipative scheme, infinite Prandtl number model for convection, Nusselt number

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical algorithms for stationary statistical properties of dissipative dynamical systems

It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. The main concern of this manuscript is numerical methods for dissipative chaotic infinite dimensional dynamical systems that are able to capture the stationary statistical properties of the underlying dynamical systems. We first survey results on temporal and spatial approximations that enjoy the...

متن کامل

Upper Semi-continuity of Stationary Statistical Properties of Dissipative Systems

We show that stationary statistical properties for uniformly dissipative dynamical systems are upper semi-continuous under regular perturbation and a special type of singular perturbation in time of relaxation type. The results presented are applicable to many physical systems such as the singular limit of infinite Prandtl-Darcy number in the Darcy-Boussinesq system for convection in porous med...

متن کامل

Stability Analysis of the Nonlinear Galerkin Method

Our object in this article is to describe some numerical schemes for the approximation of nonlinear evolution equations, and to study the stability of the schemes. Spatial discretization can be performed by either spectral or pseudospectral methods, finite elements or finite differences; time discretization is done by two-level schemes, partly or fully explicit. The algorithms that we present s...

متن کامل

02 4 v 1 2 9 O ct 1 99 7 Time - Reversible Dynamical Systems for Turbulence

Dynamical Ensemble Equivalence between hydrodynamic dissipa-tive equations and suitable time-reversible dynamical systems has been investigated in a class of dynamical systems for turbulence. The reversible dynamics is obtained from the original dissipative equations by imposing a global constraint. We find that, by increasing the input energy, the system changes from an equilibrium state to a ...

متن کامل

Approximation of the Stationary Statistical Properties of the Dynamical System Generated by the Two-dimensional Rayleigh-bénard Convection Problem

In this article we consider a temporal linear semiimplicit approximation of the two-dimensional Rayleigh-Bénard convection problem. We prove that the stationary statistical properties of this linear semi-implicit scheme converge to those of the 2D Rayleigh-Bénard problem as the time step approaches zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2010